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Abstract

Phenylpyrazole insecticides such as fipronil have been used as replacements for 

organophosphates. The wide application of fipronil raises concern about environmental 

contamination and risk for fish, birds, other non-targeted beings and human health. A sensitive, 

competitive indirect heterologous enzyme-linked immunosorbent assay (ELISA) was developed. 

Antibodies with different specificities to fipronil and its metabolites were produced. Two ELISAs 

having IC50 values of 0.58 ± 0.06 and 2.6 ± 0.4 ng/mL were developed. Design of different 

haptens and coating antigens resulted in two assays with distinct cross-reactivity patterns for 

structurally related compounds: 96%, 38% and 101% vs 39%, 1.4% and 25% for fipronil-sulfide, 

fipronil-detrifluoromethylsulfonyl and fipronil-desulfinyl, respectively. Performance of the 

immunoassays was demonstrated by a recovery study from spiked water, human serum and urine 

matrices, giving recovery values in the range of 85–111% for different concentrations. The assays 

demonstrated good correlation in fipronil recovery with conventional LC-MS/MS analysis. The 

generic assay 2265 has the sensitivity to measure fipronil and its analogs in serum at levels 

relevant for exposure monitoring. The assays were used to analyze human urine samples obtained 

from exposure studies and serum samples from rats treated with fipronil-containing diet.
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INTRODUCTION

Fipronil is a highly effective broad-spectrum insecticide widely used for agricultural and 

non-agricultural purposes: soil injection,1–3 use on fruits, vegetables, coffee, rice and other 
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crops, as well as for treatment of seeds.2,4 It is registered for use by lawn care and pest 

control operators to treat golf courses and food handling establishments. It has also found 

application in topical pet care products. Acting as a neurotoxic GABAergic insecticide, 

fipronil disrupts normal nerve function by blocking the inhibitory gamma-aminobutyric acid 

type A (GABAA) receptor system of insects. Such inhibition results in excessive neuronal 

stimulation and death of the target insect.5 It has been shown that fipronil has higher affinity 

toward the insect GABAA receptor than to the human or other mammalian receptors.6–9 

Despite the lower fipronil affinity to the native mammalian heterooligomeric receptor, a 

recent report showed a similar high affinity of fipronil to the human receptor subunit β3 as to 

the insect GABAA receptors.6,10 In turn, the human β3 GABAA receptor is linked to 

neurodevelopmental disorders such as autism,11,12 Angleman syndrome,13 and epilepsy.13 

Fipronil can induce some cytochrome P450s, and the in vitro cytotoxic effects of fipronil 

and its metabolites at high concentrations suggest the possibility of toxicity by non-neural 

mechanisms.7,14–16 Fipronil metabolites have also been shown to maintain bioactivity and 

toxicity in mammals, having 10-fold higher potency (for fipronil-desulfinyl, an 

environmental metabolite) at the mammalian GABA-gated chloride channel, narrowing the 

selectivity between insects and mammals.7 Therefore, there is theoretical evidence of 

possible fipronil toxicity in humans independent of its neural target.

Human exposure may occur though interactions with pets both in pet industry and at home. 

The principal risk to human health is likely to the brain and nervous system of young 

children and fetuses since exposures to the toxicants can alter organizational events in the 

developing brain.17–20 General symptoms of fipronil exposure are similar in rats and 

humans and include increased excitability, headache, dizziness, seizures, reduced food 

consumption, nausea and vomiting in humans.21,22 US EPA classified fipronil as moderately 

toxic possible human carcinogen, with negligible risk for residential application1. According 

to the national survey about 40% of American homes tested positive for the presence of 

fipronil (0.16 ng/cm2 of the floor).23 A number of case studies were registered with 

incidents generally of low to moderate severity, with few severe and lethal cases.1 In 

contrast to possible risk from human exposure, the US EPA identified a number of 

significant risks for the environment including acute and chronic risks to freshwater and 

marine invertebrates and fish species, acute lethal and reproduction risks to birds, and 

reproductive effects in insectivorous mammals.1 To mitigate ecological risks routine 

environmental monitoring could help in timely detection of environmental contamination 

thus preventing at-risk species from exposure. Rapid detection tools could also be applied to 

monitoring of population exposure occurring at their homes, thus preventing undesirable 

consequences of fipronil exposure.

Detection of fipronil residues (fipronil and metabolites) in environmental samples24,25 and 

body fluids26–29 is usually performed by well established analytical techniques, high-

performance liquid chromatography (HPLC) or gas chromatography (GC) coupled to 

sensitive and highly selective mass detectors. Despite the advantage of being highly 

sensitive (LOQ 0.18–2.5 µg/L)26,28,29 and selective, instrumental methods require extensive 

sample preparation and clean-up procedures, that become laborious, time-consuming and 

expensive when a large number of samples have to be analyzed in monitoring studies. 
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Immunoassay methods have been proven to be quantitative, relatively inexpensive, high 

throughput methods of choice for large screening studies of environmental 

contaminants,30,31 pesticides,32–34 their degradation products and biological 

metabolites.35,36 In the literature, only one publication37 and one patent3 have been found on 

the development of a fipronil assay. However, in those studies authors used only one hapten 

to raise the antibody and assay development. The reported assays were not characterized for 

their robustness to matrix variables, such as pH, ionic strength or effect of organic solvent 

on assay performance. In addition, they tested the cross-reactivity in their assays with 

different insecticides and pesticides, but these were only distantly structurally similar to 

fipronil.

In this study, we developed an immunoassay to fipronil and the class of fipronil metabolites. 

Our effort was directed to improve the sensitivity of the immunoassay compared to one 

published by Liu et al.,37 by applying careful design of immunizing and coating antigen 

haptens. We also studied the selectivity of resulting assays by testing not only compounds 

generally similar to fipronil, but with close structurally related molecules, chiefly 

environmental and biological metabolites. The resulting assays were optimized, 

characterized, and validated with spike-recovery studies from fortified water, human serum 

and urine matrices. The recovery values were also compared to conventional LC-MS/MS 

analysis. Finally, the developed assay was applied to the analysis of real urine samples from 

a human exposure study.

MATERIALS AND METHODS

Information concerning chemicals and instruments, buffers, hapten synthesis, immunization 

and antiserum preparation, reagents and assay buffer optimization, cross-reactivity, human 

serum matrix effect is detailed in the Supporting Information (SI).

Preparation of imunogens and coating antigens

Haptens with a reactive carboxylic acid group were conjugated to proteins by a sulfo-N-

hydroxysuccinimide (NHS) (Haptens 1–4) method and haptens with an amine group (–

NH2), by the diazotization method (Haptens 5–6). Haptens 1–4 (Table S1) were conjugated 

to thyroglobulin (Thy) for immunogen preparation. Haptens 1–6 were conjugated to bovine 

serum albumin (BSA) and conalbumin (CON) for coating antigen screening (Table S1). The 

conjugation protocols are detailed in the SI.

Indirect competitive ELISA

Plates were coated with the optimal concentration of antigen diluted in coating buffer (100 

µL/well). After incubation for 1h at room temperature (RT), the solution was replaced with 

blocking buffer (200 µL/well) and plates were incubated over night at 4 °C or for 1–4 hours 

at RT. Plates were washed with PBST 3 times prior to sample loading. Sample solutions in 

assay buffer were loaded in the first row of the coated plate (in duplicates or triplicates) and 

diluted in subsequent rows preloaded with assay buffer (50 µL/well). An equal volume of 

anti-fipronil antiserum diluted in PBS was added. The plate was incubated for 1h at RT and 

then washed 5 times with wash buffer. Goat anti-rabbit IgG-HRP conjugate was added at 
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100 µL/well in a 1:10000 dilution as instructed by manufacturer. The plate was incubated for 

1h at RT and washed 5 times. Substrate solution was added (100 µL/well) and was left to 

develop color for about 10 min. The reaction was stopped by addition of 2M H2SO4 (50 µL/

well) and absorbance was read at 450 nm. SigmaPlot 11.0 software was used for curve 

fitting and data analysis.

Immunoassay validation

To evaluate the performance of the fipronil immunoassays three series of experiments were 

performed. A) Recovery from fortified samples measured by immunoassay (from industrial 

tap water, human serum and urine). B) Correlation of recovery values obtained by 

immunoassay and LC-MS/MS. C) Immunoassay application to analysis of real samples. An 

extensive validation was performed only for the generic assay #2265 since it could be 

applied for the detection of fipronil-like analytes in environmental samples, as well as in 

human biofluids. The cross-reactivity of the assay #2268 for fipronil-sulfide-amide makes 

this assay more suitable for environmental analysis. Thus #2268 was only characterized for 

a water matrix. The immunoassay was used to analyze urine samples obtained from people 

exposed to fipronil during application of flea treatment to their companion animals. Urine 

samples were kindly provided by Dr. Krieger from the University of California, Riverside 

and detailed information on the exposure study is available from Dyk et al.38 The 

immunoassays were also used for quantification of total concentration of fipronil and its 

metabolites in the serum of rats treated with fipronil-containing diet. Serum samples were 

provided by Dr. Strynar from the Environmental Protection Agency, and details on animal 

experiments are available from McMahen et al.39 Sample preparation for validation studies 

and analysis of samples from exposure studies are detailed in the SI.

RESULTS AND DISCUSSION

Hapten design

Fipronil is a small molecule, thus it does not elicit an immune response by itself. To be 

immunogenic, it is conjugated to a carrier protein of high molecular weight (i.e. Thy) in a 

particular orientation so that key functional groups of the target molecule are most 

effectively exposed. Antibodies are generally formed to the part of the molecule that is the 

most distal from the protein.40 It is generally accepted that a linker arm of 3–5 carbon 

atoms41 is the most efficient distance of hapten from carrier protein: neither too short for the 

hapten to be shielded by the protein, nor too long that would allow the hapten to fold back 

into the lipophilic core of the protein.

Immunizing haptens were designed to expose structural determinants A, B, C (Scheme 1) of 

the fipronil molecule to produce antibodies selective to these particular patterns of analyte. 

Haptens were synthesized from fipronil through modification of the amine group by 

attachment of a linker arm containing a carboxylic group (Hapten 1) and by hydrolysis of 

the nitrile group to carboxylic group (Hapten 3, Scheme 1). In this way, pairs of structural 

determinants A and B or B and C were exposed for recognition and antibody production. 

Two other immunizing haptens (Haptens 2 and 4) were synthesized by similar reactions 

starting from the fipronil analogue missing the SOCF3 group (compound 2, Scheme 1). 

Vasylieva et al. Page 4

Environ Sci Technol. Author manuscript; available in PMC 2016 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Haptens 1 and 3 were designed to produce fipronil-selective antibodies, while haptens 2 and 

4 targeted more class-selective recognition.

A number of publications have shown that in competitive immunoassays the sensitivity of 

the assay is greatly increased when the hapten in the coating antigen is different from the 

immunogen.40,42–44 Therefore, additional haptens were used in the development of 

heterologous immunoassays (Haptens 5and 6). Fipronil analogue, compound 2 (Scheme 1), 

and 2,6-dichloro-4-(trifluoromethyl)aniline were attached to protein without additional 

modification through the amine group. Thereby, heterology was achieved by altering parent 

structure (Haptens 2, 4, 5 and 6) or by altering parent structural determinants (Haptens 1, 3). 

Haptens 5 and 6 also used a different coupling chemistry (diazotization).

Coating antigen screening

Each immunogen was used for immunization of three rabbits. Sera from 12 rabbits were 

screened in a three-point competitive format against 6 haptens conjugated with BSA and 

CON (data not shown). The serum/coating antigen pairs showing good inhibition with 

fipronil were then tested in a full competitive format (Table S2, selected data). As expected, 

the IC50 values for homologous assays were generally higher than the IC50 values for 

heterologous assays. For example, in the homologous competitive assay with serum 2265, 

the IC50 value was 54.2 µg/L (2-BSA), whereas the IC50 was 2.1 µg/L in the heterologous 

assay (5-CON). Among the most successful combinations of sera/coating antigens, having 

high assay sensitivity, sufficiently high maximum signal, good signal-to-noise ratio and 

slope values around 0.5–1, the pairs of #2265/5-CON and #2268/1-CON were chosen for the 

following studies because these assays had the highest sensitivity.

Assay optimization

Since fipronil has only moderate solubility in aqueous solutions (about 2 mg/L), the 

influence of organic solvent concentration in assay buffer on assay sensitivity was evaluated. 

The organic solvent in assay buffer is also necessary to keep hydrophobic analytes in 

solution and prevent their non-specific binding on the plastic containers. Only methanol was 

assessed because methanol is often used in sample preparation: it is less volatile than 

acetonitrile, yet is still easy to evaporate. It is an appropriate solvent when downstream 

LC/MS analysis is required. PBS buffer containing an increasing amount of methanol was 

tested in both assays with serum 2265 and 2268 (Fig. S1A and Fig S2A). There was no 

significant effect on the serum 2268 based assay sensitivity with IC50 around 3.5 µg/L. 

However, the maximum of absorbance was concentration dependent and a 20% decrease in 

maximum absorbance value was observed in the assay with 40% methanol in the buffer. In 

the 2265 assay, the IC50 values were very close, 0.49 and 0.51 µg/L respectively, when 

methanol was present at 10% or 20% in PBS buffer (prior antibody addition). However, in 

PBS containing 40% of methanol the sensitivity of the assay decreased dramatically with an 

IC50 at 9.0 µg/L, probably due to protein denaturation by the organic solvent.

An increase in ionic strength resulted in a slight improvement of the 2268 assay sensitivity, 

but the maximum absorbance was negatively affected (Fig. S2B). In contrast, ionic strength 

had a dramatic effect on the 2265 assay leading to a 10 fold increase in IC50 value and about 
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a 50% decrease in maximum absorbance (Fig. S1B). These results suggest that the binding 

interaction between antibody and analyte/coating antigen is gradually suppressed in 

solutions with high ionic strength.

There was a slight change in sensitivity upon pH change in the range from 6.5 to 9.5, with 

lowest IC50 values at pH 8.5 for both the 2265 and the 2268 assays (Fig. S1C, S2C). Similar 

to IC50 values, the maximum absorbance also decreased constantly as pH increased for the 

2265 assay, but no remarkable change was observed for the 2268 assay. The pH was 

retained at 7.5 for the following experiments.

The optimized ELISAs used coating antigen-antibody pairs 5-CON/2265 and 1-CON/2268 

at coating concentrations of 1 µg/mL. The coated plate was blocked with 1% BSA. The 

analyte was loaded in assay buffer containing 10% MeOH in PBS, pH 7.5. Sera dilutions 

were 1:6000 and 1:8000 in PBS, respectively after addition to the plate. The heterologous 

assay had a linear range (IC20–80) of 0.14–2.22 µg/L of fipronil in assay buffer and IC50 

value of 0.58±0.06 µg/L (tested in triplicate for 8 days) for #2265 (Fig. 1); and a linear range 

(IC20–80) of 0.54–12.6 µg/L of fipronil in assay buffer and IC50 value of 2.6±0.4 µg/L 

(tested in triplicate for 8 days) for #2268 (Fig. 1). The LOD in the buffer was determined 

from the IC10 value, and estimated at 0.06 µg/L and 0.22 µg/L for 2265 and 2268, 

respectively. The sensitivity of the assays is comparable with those of instrumental LC- and 

GC/MS/MS methods being in the range of 0.18–2.5 µg/L.26,29

The overall assay optimization data suggest that the binding properties of the serum obtained 

from rabbit 2268 are less affected by changes of sample matrix, thus giving a more robust 

assay. The two assays significantly differ in metrological characteristics, where assay 2265 

gives a very low limit of detection and high sensitivity, while the 2268 assay has a wider 

linear analytical range and better signal to noise ratio.

Only a few references to a fipronil immunoassay could be found in the literature. Liu et al.37 

developed poly- and monoclonal antibodies using a homologous hapten, a derivative of 

fipronil-sulfone, for preparation of the immunogen and coating antigen. The assay had lower 

sensitivity compared to those described in this paper, having IC50 values of 18.0 µg/L and 

6.0 µg/L for polyclonal (pAb) and monoclonal (mAb) antibodies, respectively. However, the 

linear range of detection for the reported assays was wider. Based on IC10-IC90 the assay 

was linear between 0.07–203 µg/L for the pAb and 0.07–485 µg/L for the mAb. Another 

assay based on a mAb aimed to detect the active ingredients of a termite insecticide, 

including fipronil, was patented by Miyake et al.3 They demonstrated that fipronil detection 

occurs almost linearly through the range of concentrations from 5–80 µg/L. Based on 

comparison with these two publications it appears that the assay described here 

demonstrates very good sensitivity to fipronil. Careful design of immunogen and a 

heterologous approach for coating antigen selection allowed the development of a high 

sensitivity assay using polyclonal serum that is much easier to obtain compared to the 

laborious procedure of monoclonal antibody production.
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Cross-reactivity (CR)

A range of fipronil analogues with modified substituents were purchased or synthesized to 

be used in cross-reactivity studies to determine to which specific epitope of hapten the 

antibody was raised to; and how the structure of immunogen may alter the selectivity of the 

developed antiserum. The main reactions to prepare fipronil congeners were based on 

methods previously described. Analytical data of the resulting compounds conformed to 

published information.45–47

Antiserum 2265 was raised against a hapten exposing the nitrile group while attached to the 

protein through the amine moiety (Hapten 2). Thus, resulting antibodies are very selective to 

the presence of nitrile group in the analyte. All fipronil analogues containing the nitrile 

group strongly inhibited the assay giving CR in the range of 50–100% compared to fipronil 

(compounds 2–5, Table 1). In contrast the analytes missing the nitrile group poorly 

competed with coating antigen and their cross-reactivity hardly exceeded 4%. This 

remaining activity may come from antibody selectivity to the skeletal structure of the 

substituted phenylpyrazole.

The binding pocket seems to be more complex in antibodies from serum 2268 raised against 

hapten having SOCF3 and the amine group exposed, while attached to the protein through – 

CONH-linkage of fipronil-acid (Hapten 3). The developed serum selectively recognized 

SOCF3. This hypothesis is supported by the decrease in CR of compounds with modified 

substituents at position B of the fipronil molecule: 

SOCF3>SO2CF3>SOC2H5≈SCF3>CF3>H (compounds 1>3>6≈2>5>4, Table 1) 

corresponding to 100>71>43≈39>25>1.4%. However, the serum had even stronger 

selectivity toward the amide group at the adjacent position since specificity to fipronil-

sulfide-amide was higher than to fipronil (CR 157%, compound 10, Table 1), despite having 

a sulfide group instead of a SOCF3. Interestingly, assay 2268 was only slightly inhibited by 

compounds mimicking fipronil and fipronil-sulfide with the nitrile group substituted by a 

carboxyl group (compounds 8, 9). Taking into account that the nitrile group was not exposed 

for recognition and antibody production, the results obtained suggest that nitrogen, as a part 

of either –CONH- or nitrile group, occupies a specific place in the binding pocket of the 

antibody used in the assay. The role of the fipronil amine group (structural determinant C) in 

antiserum recognition was not explored.

These effects demonstrate that hapten design had a significant impact on the resulting 

antiserum selectivity. The careful hapten design and successful organic synthesis allow 

construction of a library of diverse but closely related chemicals that could be manipulated 

to produce antibodies with desired characteristics: target, group or class specific reagents. It 

is not always necessary to have highly selective assays. For example, a number of 

organophosphorus pesticides are used for residential and agricultural purposes. These 

compounds have led to numerous poisonings of non-target species, including human 

fatalities. The specific assays for individual compounds of this large class are less efficient 

for pesticide control and screening.48,49 In contrast to selective tests, the antibodies used in 

screening assays should be cross-reactive in order to detect the analyte in a risk cup. In the 

literature, it has been shown that considered manipulation of the hapten structure gives 

useful highly cross-reactive assays for rapid screening of dangerous substances and related 
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compounds.50,51 High CR is usually achieved when the immunizing antigen structure 

combines the analyte main body and some of its structural determinants common to all 

compounds aimed to be recognized. In our study, the serum 2265 recognizes not only 

fipronil, but also metabolites of fipronil which contain the nitrile group and variable 

substituents at the adjacent position. Indeed, such broad selectivity appears since the 

antibodies were raised against hapten 2, where the nitrile group was preserved in the 

structure, carrier protein was attached to the amine moiety, and the SOCF3 structural 

determinant was missing. The results obtained were in strong accordance with literature 

reports.48,51

The serum 2265 having broad-selectivity properties for closely related compounds can be 

used for construction of unique biosensors or ELISA assays that will be able to detect 

fipronil-sulfone and fipronil in the blood of humans and animals to assess their exposure to 

the insecticide. The same assay/sensor could also be applied for rapid on-site monitoring of 

fipronil and fipronil-desulfinyl in environmental samples, thus assuring the real-time 

monitoring of environmental contamination.

In addition to fipronil analogues we also tested a number of GABA-antagonists (Table S3). 

There are cases where the antibody raised to biologically active molecules will detect a 

group of different structures all of which bind to the same receptor. In these cases the 

antibody can act as a surrogate receptor for screening.52,53 In our case the immunoassay 

failed to detect a variety of insecticides and cage convulsants acting on the GABA channel. 

Since these compounds bind to a series of diverse sites on the GABA-gated chloride channel 

of arthropods and vertebrate, cross-reactivity was not expected.

Matrix effect

Sample preparation is an important step in complex sample analysis influencing accuracy 

and reliable determination in many analytical methods. However, sample clean-up 

procedures are often time consuming and laborious. Similarly to other analytical techniques, 

immunoreactions employed in an ELISA may be altered by multiple components present in 

complex media. However, depending on the nature of the matrix and immunoassay 

characteristics the interference could be minimal, so that preparation of a calibration curve 

in a similar matrix may decrease the error of analysis. The interference in ELISA could also 

be diminished by simple sample dilution. The effect of matrix on assay 2265 performance 

was evaluated in human serum (Fig. S3). In this study fipronil-sulfone was chosen as the 

analyte since it is the major metabolite of fipronil identified in serum. Since we wanted to 

use the generic assay for both analytes, other parameters of the assay were used as optimized 

for fipronil. Serum matrix had variable effects on the competition curve. When the assay 

was performed in 100% human serum (prior to antibody addition), the sensitivity did not 

change dramatically compared to the assay conducted in buffer, with IC50 values 4.11 and 

4.95 µg/L (Fig. S3), respectively. However, a constant decrease in maximum signal was 

observed when the content of serum matrix increased in assay buffer. Interestingly, the 

sensitivity of the assay increased in buffer containing serum matrix at 10% (IC50 at 2.47 

µg/L), followed by a subsequent decrease in sensitivity with an increase of serum matrix 

portion in the assay buffer (IC50 3.37 µg/L at 50% matrix). It is possible that proteins present 
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in the serum matrix help to decrease non-specific binding in the assay thus improving assay 

characteristics without affecting the desired immuno-recognition and binding. Since matrix 

suppressed the maximum signal even at 10-fold dilution, we decided to prepare the 

calibration curve in a 10% blank matrix of human serum.

Similar analysis was performed with urine matrix for sera 2265 and 2268. There was no 

significant effect of urine matrix on assays sensitivity. However, the signal intensity was 

again suppressed with increasing amount of urine matrix (data not shown). A 10-fold 

dilution of sample with assay buffer was chosen for further validation studies.

Validation in various samples

To evaluate the performance of the fipronil immunoassays developed to detect quantitatively 

the analyte in complex samples, we performed a spike-recovery analysis from different 

matrixes, including industrial water, human serum and urine. In case report studies the 

concentration of fipronil and fipronil-sulfone in the serum of humans intoxicated with 

fipronil were reported to be up to 4000 µg/L of plasma.21 Taking into account these data, 

human serum was fortified with known concentrations of fipronil, or fipronil-sulfone at 10–

50 µM range (0.5–2.5 µg/L in the well after dilutions). We aimed to study the recovery of 

low concentrations to estimate the influence of the matrix on the accuracy of quantification. 

Otherwise, with higher spiked concentrations the assay would require higher dilution of the 

sample decreasing the amount of interfering matrix and facilitating quantitative analysis. We 

also evaluated concentrations of fipronil over a narrow range to validate the accuracy of the 

assay to distinguish close but different concentrations of the analyte in the matrix. Table 2 

presents good recoveries ranging from 93 to 118% for both analytes at all concentrations 

tested.

To our knowledge, there are few reports on fipronil monitoring in the environment. From 

the US Geological Survey54 it appears that fipronil is present in very low concentration in 

water and soil in a number of US states. The concentration varies from very low to hundreds 

of ng/L. However, from the same survey, fipronil concentrations may go up to µg/L in 

spring, for example when water is released from rice fields. Therefore, an ELISA could be 

used for monitoring downstream water released from farms. Since its sensitivity is around 

0.5–1 µg/L and toxicity of fipronil for aquatic animals is generally above 10 µg/L, 

immunoassay could be an appropriate environmental screening tool. In addition, the assay 

with serum 2265 detects environmental metabolites that are even more toxic. Similarly to 

the serum matrix, water samples were separately spiked with fipronil and fipronil-desulfinyl 

in the 10–50 µM range and recoveries were assessed with assay 2265. No significant matrix 

effect was observed from industrial water. Table 2 demonstrates good recoveries ranging 

from 73 to 91% for fipronil and 96 to 107% for fipronil-desulfinyl.

Finally, the metabolism of fipronil in mammals is being studied and only limited data are 

available concerning humans. Despite the fact that up to now there are contradictory data on 

presence of parent compound in urine in animals, human urine remains a possible way of 

exposure monitoring. Recoveries from human urine matrix fortified with fipronil in the 10–

50 µM range were 85–96% (Table 2).
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In another series of experiments a comparative study was performed to estimate the 

accuracy of the immunoassay compared to an instrumental method. Three matrixes, 

including industrial tap water, urban runoff water and human urine were fortified with 

fipronil, extracted and analyzed blind by LC-MS/MS and immunoassay. The assay 2265 

was used to estimate recovery values from urine and the assay 2268 from water. As seen in 

Table 3, there was relatively good agreement between ELISA and LC-MS/MS data. In 

industrial water and human urine extracts fipronil concentrations detected by immunoassay 

were closer to theoretical spiked values than LC-MS/MS. However, recoveries from urban 

runoff water were closer to theoretical values when detected by LC-MS/MS, with slight 

overestimation for certain spikes in immunoassay analysis. Overall, there is a linear 

correlation between data obtained by LC-MS/MS and ELISA with the ratio varying between 

1.1–1.4. These overall data suggest that immunoassay based on antiserum 2265 (and 2268) 

could be directly used for quantitative monitoring of fipronil and fipronil metabolites in 

various matrices without any additional sample preparation, thus reducing analysis time, 

especially in the case of a large screening campaign, and reducing the cost of analysis.

Urine samples from exposure studies

Dyk et al.38 were looking for fipronil and its metabolites in urine of pet owners after they 

used Frontline® insecticide in companion animals. Many urine samples from pet owners 

were collected prior and post product application. Authors analyzed samples by LC-MS/MS 

before and after hydrolysis of possible bioconjugates of fipronil and its metabolites. The 

selected urine samples were also analyzed by a third independent laboratory using LC-

MS/MS. We used selected urine samples to conduct the analysis using the fipronil 

immunoassay. Assay 2265 was chosen since it was the most sensitive to fipronil and a 

number of its metabolites. In the literature there are limited data on fipronil metabolism in 

humans, and metabolites present in human urine have not been well studied. Xenobiotics are 

excreted in the urine in forms of glucuronide or sulfate conjugates of parent compound or its 

metabolites. To hydrolyze possible conjugates of fipronil we used an enzymatic solution of 

β-glucuronidase/sulfatase. This method provides mild conditions for hydrolysis decreasing 

the possibility of destroying the compound of interest by harsh acidic hydrolysis conditions. 

The assay showed non-detectable levels of compounds of interest (data not shown) with 

limits of detection of 0.05±0.02, 0.02±0.01, 0.04±0.02, and 0.07± 0.02 µg/L (n=6 days) for 

fipronil-sulfone, fipronil-sulfide, fipronil detrifluoromethylsulfinyl and fipronil-desulfinyl, 

respectively. Our findings are similar to data published by Dyk et al.38 They concluded that 

levels observed after Frontline® application were not different from levels observed in pre-

application urine samples and that a time/concentration trend was not observed.

Serum samples from dosed rats

McMahen et al.39 were identifying serum/urine biomarkers of fipronil exposure from dosed 

animal samples as potential biomarkers for use in human biomonitoring studies. Authors 

used LC/QQQ (triple quadrupole) mass spectrometry to identify possible fipronil derivatives 

present in biofluids, and to quantify fipronil and fipronil-sulfone in rat serum. We used both 

immunoassays to quantify total concentration of fipronil and its metabolites in the selected 

serum samples. The data obtained by both assays are in very good correlation with LC/QQQ 

results (Table 4). The assays gave higher estimates compared to fipronil or fipronil-sulfone 
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concentrations separately, because compounds are cross-reactive in both assays. However, 

the values obtained by the assays are very close to the total fipronil detected with LC/QQQ. 

No significant difference was detected between methods using simple T-test analysis with 

p<0.05.

In conclusion, two sensitive immunoassays were developed. One assay appeared to be 

selective to fipronil and its major metabolite fipronil-sulfone. Another assay demonstrated 

recognition of the class of structures closely related to fipronil. Such difference in 

recognition behavior of antibodies was achieved by using different haptens exposing either 

the single nitrile structural determinant of fipronil (for generic assay) or the 

trifluoromethylsulfonyl and amine structural determinants. A heterologous format has 

proven to result in more sensitive assays with IC50 of 0.58±0.06 µg/L and 2.6±0.4 µg/L. The 

assays have the sensitivity to measure fipronil and its analogs relevant for medical screening 

where fipronil and fipronil-sulfone concentration in serum may be up to 4000 µg/L; and for 

exposure monitoring (toxicity of fipronil for aquatic animals is above 10 µg/L). The assays 

successfully demonstrated their accuracy and reliability when applied in spike-recovery 

studies and compared to established analytical techniques (LC-MS) in different matrices 

providing a valuable tool for further development of rapid immunochemical screening 

methods. The developed assay #2265 might be used in screening studies whenever analyte is 

fipronil-like molecule. The assay #2268 is more convenient for quantitative studies, since 

the assay is more robust to changing experimental conditions, and thus is the best choice for 

analysis of environmental samples.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Fipronil competition curves with serum from rabbit 2265 and 2268 in 10mM PBS assay 

buffer at pH 7.5 containing 10% MeOH. Reagent concentrations: coating antigen 1µg/mL 

(5-CON/2265, 1-CON/2268); anti-fipronil serum (1/6000); goat anti-rabbit IgG-HRP 

(1/10000). Data points are the mean and standard deviation over 3 days.
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Scheme 1. 
Synthetic routes of designed haptens. Haptens 1 and 2 were obtained by linker attachment to 

the amine group. Haptens 3 and 4 were obtained by hydrolysis of the nitrile group. A, B, and 

C refer to structural determinants exposed for antibody production.
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Table 2

Recovery of fipronil and fipronil metabolites in spiked samples of industrial water, human serum and urine 

measured by immunoassay.

Spiked
conc*
µg/L

Fipronil, µg/L (% recovered)

industrial
water serum urine

2.5 1.8±0.25
(73.3±9.6)

2.3±0.6
(93.1±22.7)

2.14±0.28
(85±11)

1 0.9±0.05
(85.5±5.5)

1.0±0.1
(103.4±13.3)

0.90±0.20
(90±20)

0.5 0.5±0.0
(91.3±11.6)

0.6±0.1
(111±11)

0.48±0.0
(96±9)

Fipronil metabolites, µg/L (% recovered)

Fipronil sulfonea Fipronil-
desulfinyb

2.5 2.6±0.4
(105.8±17.3)

2.4±0.23
(96.4±9.3)

1 1.2±0.1
(116.8±9.1)

1.0±0.09
(104.4±9.0)

0.5 0.6±0.2
(118±47)

0.5±0.04
(107±8)

Assay conditions: coating antigen (5-CON) 1µg/mL; anti-fipronil serum #2265 (1/6000); goat anti-rabbit IgG-HRP (1/10000).

*
spiked concentrations indicated in the table are the final concentrations in the well after sample dilution prior to loading onto the plate and after 

addition of the antibody in the well.

a
in human serum

b
in industrial water.

Values are the mean ± standard deviation (n≥3 days).
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Table 3

Recoveries of fipronil in spiked industrial and urban water, and in spiked human urine samples: comparison 

between immunoassay and LC-MS/MS.

Analyte Spike ELISA
(A)

LC-MS/MS
(B)

Ratio
(A/B)

Industrial water

Fipronil 2.0 1.7±0.4 1.7±0.4 1.0

29.1 30.8±4.6 21.6±1.7 1.4

47.6 49.6±7.3 35.3±5.6 1.4

9.9 10.2±0.8 8.1±0.2 1.3

4.8 5.1±1.0 4.2±0.3 1.2

Urban runoff water

Fipronil 29.1 39.5±14.0 20.0±4.9 2.0

2.0 1.9±0.8 1.8±0.2 1.1

47.6 65.5±22.8 39.2±8.4 1.7

4.8 7.0±2.5 4.4±0.9 1.6

9.9 10.6±4.0 8.0±1.2 1.3

Urine extract

Fipronil 10 9.6±0.9 8.5±0.6 1.1

20 18.0±3.9 14.7±2.5 1.2

25 22.7±2.7 18.6±3.0 1.2

50 42.7±5.5 38.5±1.1 1.1

Assay conditions. For recovery studies from water, assay 2268: coating antigen (1-CON) 1µg/mL; anti-fipronil serum (1/8000); assay buffer with 
20% MeOH, goat anti-rabbit IgG-HRP (1/20000). For recovery studies from urine: coating antigen (5-CON) 1µg/mL; anti-fipronil serum (1/6000); 
goat anti-rabbit IgG-HRP (1/10000). Values are the mean ± standard deviation (n=3 days).

Environ Sci Technol. Author manuscript; available in PMC 2016 August 18.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vasylieva et al. Page 21

T
ab

le
 4

D
et

ec
tio

n 
of

 f
ip

ro
ni

l a
nd

 f
ip

ro
ni

l-
su

lf
on

e 
in

 r
at

 s
er

um
 s

am
pl

es
: c

om
pa

ri
so

n 
be

tw
ee

n 
im

m
un

oa
ss

ay
s 

an
d 

L
C

/Q
Q

Q
-M

S.

R
at

sa
m

pl
e

L
C

/Q
Q

Q
-M

S 
(µ

g/
m

L
)£

Im
m

un
oa

ss
ay

s
(µ

g/
m

L
)

F
ip

ro
ni

l
(A

)
F

ip
ro

ni
l-

su
lf

on
e(

B
)

A
+B

#2
26

5
#2

26
8

1 (C
N

T
R

)
<

L
O

Q
*

<
L

O
Q

**
<

L
O

Q
<

L
O

D
$

<
L

O
D

§

2
0.

5
1.

9
2.

4
3.

9±
2.

7
2.

4±
0.

6

3 (C
N

T
R

)
<

L
O

Q
<

L
O

Q
<

L
O

Q
<

L
O

D
<

L
O

D

4
0.

5
2.

3
2.

8
3.

0±
1.

3
2.

3±
0.

8

5 (C
N

T
R

)
<

L
O

Q
<

L
O

Q
<

L
O

Q
<

L
O

D
<

L
O

D

6
0.

4
1.

9
2.

3
1.

7±
0.

4
1.

9±
0.

3

7 (C
N

T
R

)
<

L
O

Q
<

L
O

Q
<

L
O

Q
<

L
O

D
<

L
O

D

8
0.

3
1.

4
1.

7
1.

5±
0.

5
1.

9±
0.

5

9
0.

4
0.

7
1.

1
0.

9±
0.

1
1.

3±
0.

4

10
0.

4
2.

1
2.

5
2.

3±
0 

.4
2.

5±
0.

3

11 (C
N

T
R

)
<

L
O

Q
<

L
O

Q
<

L
O

Q
<

L
O

D
<

L
O

D

12
0.

3
1.

3
1.

6
1.

6±
0.

0
1.

3±
0.

4

£ R
es

ul
ts

 a
re

 p
ro

vi
de

d 
by

 M
cM

ah
en

 e
t a

l.3
9

* L
O

Q
=

10
 n

g/
m

L

**
L

O
Q

=
10

 n
g/

m
L

, R
SD

 is
 <

15
%

.

$ L
O

D
=

0.
06

 n
g/

m
L

§ L
O

D
=

0.
22

 n
g/

m
L

. F
or

 E
L

IS
A

, p
ri

or
 to

 a
dd

iti
on

 to
 th

e 
pl

at
e,

 s
er

um
 s

am
pl

es
 w

er
e 

di
lu

te
d 

10
00

 o
r 

10
0 

tim
es

 f
or

 tr
ea

te
d 

an
d 

co
nt

ro
l (

C
N

T
R

) 
an

im
al

s,
 r

es
pe

ct
iv

el
y;

 n
=

2 
di

ff
er

en
t d

ay
s,

 n
o 

st
at

is
tic

al
 

di
ff

er
en

ce
 w

ith
 (

A
+

B
) 

w
as

 o
bs

er
ve

d,
 p

<
0.

05
.

Environ Sci Technol. Author manuscript; available in PMC 2016 August 18.


